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The theory of point vortices in a two-dimensional ideal fluid has a long history, but on
surfaces other than the plane no method of finding periodic motions (except relative
equilibria) of N vortices is known. We present one such method and find infinite
families of periodic motions on surfaces possessing certain symmetries, including
spheres, ellipsoids of revolution and cylinders. Our families exhibit bifurcations. N
can be made arbitrarily large. Numerical plots of bifurcations are given.

1. Introduction
Since the 19th century (Helmholtz 1858; Kirchhoff 1876), the Hamiltonian theory

of point vortices in a two-dimensional ideal fluid has been a classic chapter in
hydrodynamics (cf. Aref 1983). Besides being a useful mathematical prototype of
fluid motion, point vortices are of direct physical interest because they can be
desingularized to solutions of the Euler equation.

Much is known about periodic motions of these vortices on the plane. On surfaces
other than the plane, however, the subject is less well explored. On spheres, Pekarsky
& Marsden (1998) investigated the stability and Lim, Montaldi & Roberts (2001)
the classification of relative equilibria (vortices that move as a rigid configuration),
whereas on cylinders, flat tori and spheres, Aref & Stremler (1996), Stremler & Aref
(1999) and Kidambi & Newton (1998, 1999, 2000a, b) carried out extensive studies of
three vortices. Apart from these pioneering works, few results pertaining to N vortices
on general surfaces existed until recently; in particular, practically no examples of
periodic motion were known. The first infinite family of periodic motions, dancing
vortices, was found by Tokieda (2001) (and independently worked out by James
Montaldi). But dancing vortices were all of a single topological type, i.e. as the
parameters varied, they did not undergo bifurcation.

In the present paper we construct an infinite bifurcating family of periodic motions
of vortices on surfaces possessing discrete symmetries. N can be made arbitrarily
large. The case of dihedral symmetry, including spheres, ellipsoids of revolution and
cylinders, is described in detail: the twisters of § 3. In § 5, the cases of cyclic and
regular polyhedral symmetries are outlined.

Where should we look for such a family of periodic motions? The idea is to endow
solutions with so much symmetry that they are left with only two degrees of freedom,
and in the resulting two-dimensional system use the Hamiltonian to delineate closed
curves. This is reminiscent of the standard approach to integrable systems, which
reduces dimensions by finding independent, Poisson-commuting first integrals. An
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advantage of our approach is that we need not find these first integrals, since we are
concerned with individual trajectories, not with invariant tori throughout the phase
space; a possible disadvantage is that perturbation theory for symmetric solutions
like ours may require a delicate book-keeping of how dynamics intertwines with
symmetry.

In plane theory, a sizable literature is already available on periodic motions in-
volving symmetries, e.g. Aref (1982), Koiller et al. (1985), Lewis & Ratiu (1996);
notably Aref (1982) constructed, from a different viewpoint, a plane analogue of our
twisters. Hally (1980) appears to be the earliest to treat vortex motion on surfaces
with symmetry.

A good variation on our model would be to add a slight thickness to the two-
dimensional fluid, so that we could examine, for instance, bending of vortex tubes
and the evolution of an ensemble of Ekman boundary layers. Tropical cyclones (cf.
e.g. Holton 1979) constitute a class of meteorological objects into which our theory,
or its variant, is likely to provide some qualitative insight. These cyclones are intense
vortical storms over tropical oceans above regions of warm surface water (exceeding
say 26 ◦C); they are each typically a couple of hundred kilometres across and are
born as a cluster extending up to thousands of kilometres, a scale over which the
curvature of the Earth begins to be felt. Another area of application is the study of
a rotating layer of liquid helium II (cf. Patterson 1974).

2. Point vortices on surfaces

We recall the theory and list explicit formulae for Hamiltonians on the plane as
well as on several other surfaces. Consider an ideal fluid flow in the complex plane
C, irrotational except in a domain D bounded by a loop γ = ∂D. The velocity field
v is generated by a stream function ψ. Shrink D to a point z while keeping the
circulation Γ =

∫
γ
v · dγ constant; in the limit, ∇× v = −∇2ψ converges to Γ times a

δ-function concentrated at z, an object called plane point vortex of vorticity Γ . The
dynamics of N interacting vortices lends itself to a Hamiltonian formalism: the phase
space CN\{zk = zl for k 6= l}, the direct-sum Kähler metric weighted with vorticities∑N

k=1 Γk dzk dz̄k and the Hamiltonian h = −(1/2π)
∑

k<l ΓkΓl log |zk − zl | which is the
weighted sum of N Green’s functions ψ for N vortices. Indeed, in the plane C a
fundamental solution to −∇2ψ = δ is ψ ∝ log r, where r denotes the Euclidean
distance between vortices. The equation of motion is

dzk
dt

=
2

i

∂h

∂(Γkz̄k)
= − 1

2πi

∑
l 6=k

Γl

z̄k − z̄l (k = 1, . . . , N);

this means that each of its partners zl drags the vortex zk with velocity proportional
to Γl , inversely proportional to |zk − zl |, sweeping counter-clockwise if Γl > 0 and
clockwise if Γl < 0. For example (figure 1) when N = 4 and Γ1 = −Γ2 = Γ3 = −Γ4, if
initially the vortices are placed in order at the corners of a rectangle, then they move
symmetrically along the branches of the curve x−2 +y−2 = constant > 0. The dancing
vortices mentioned in § 1 are based on this example; it will be used again in § 5.

On the sphere S2, the cylinder S1 × R, the hyperbolic plane H2, the flat torus
T 2 and orientable surfaces in general, the Hamiltonian vortex formalism is defined
similarly by calculating the Laplacian ∇2 and solving for its Green’s function.
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Figure 1. Motion of vortices of vorticity Γ1 = −Γ2 = Γ3 = −Γ4 on the plane.

On the unit sphere S2,

h = − 1

4π

∑
k<l

ΓkΓl log(1− cos rkl),

where rkl denotes the spherical distance between vortices with labels k and l. It should
be noted here that ∇2 log(1− cos r) ∝ δ − 4π and not δ; we are obliged to impose a
background vorticity −4π = −area(S2), for by Stokes’s formula the integral of ∇ × v
over any closed surface must vanish. Since on account of its isotropy the background
vorticity does not affect the vortex dynamics, we shall ignore it in what follows.

On the cylinder S1 × R of unit radius, the Hamiltonian is obtained by formally
periodizing the plane Hamiltonian (invoke sin z = z

∏
n>1(1 − z2/n2π2)) and then

jettisoning additive constants to force the convergence:

h = − 1

2π

∑
k<l

ΓkΓl log
∣∣∣sin zk − zl

2

∣∣∣ ,
where z = φ+ iθ, and φ (modulo 2π), θ are the coordinates on the horizontal circle
S 1, the vertical generator R.

On the hyperbolic plane H2, ψ ∝ log tanh(r/2), where r this time denotes the
hyperbolic distance; on the torus T 2 and on an ellipsoid of revolution, ψ is express-
ible in terms of a Jacobian theta-function and Lamé harmonics respectively. The
Hamiltonians are weighted sums of these ψ.

Naturally, the theories on all these surfaces reduce to the theory on the plane in
the limit of infinitesimal distances.

3. Periodic motions with dihedral symmetry
3.1. Twisters on the sphere

On the sphere S2, we take as coordinates the longitude φ (modulo 2π) and the latitude
θ (−π/2 < θ < π/2) (rather than the usual colatitude in spherical coordinates).
Consider 2N + 2 vortices positioned as in figure 2(a):

N vortices of vorticity + 1 at (φ, θ), (φ+ 2π/N, θ), . . . , (φ+ (N − 1)2π/N, θ),

N vortices of vorticity + 1

at (−φ,−θ), (−φ− 2π/N,−θ), . . . , (−φ− (N − 1)2π/N,−θ),

2 vortices of vorticity Γ at the north and south poles.

Vortices in this configuration, or twisters, form a parametric family, with a discrete
parameter N and a continuous parameter Γ . At all times, twisters are invariant
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(a)

θ φ

(b)

2π/N

π

Figure 2. (a) Coordinates for twisters on the sphere. (b) Generators of D2N .

(a)  Γ = –1.5 (b)  Γ = –1.0 (c)  Γ = –0.9

(d)  Γ = 0 (e)  Γ = 0.7 ( f )  Γ = 1.0

(g)  Γ = 1.8 (h)  Γ = 2.1 (i )  Γ = 15

Figure 3. Twister on the sphere, N=3.

under the action of the dihedral group D2N: this group is generated by the rotation
(φ, θ) 7→ (φ + 2π/N, θ) around the pole–pole axis and the flip (φ, θ) 7→ (−φ,−θ)
around the Gulf of Guinea–Kiribati axis (figure 2b). (The choice of +1 as the
value of vorticity is immaterial, but the 2N non-polar vortices must have the same
vorticity if the symmetry D2N is to act.) Thanks to these symmetries, the positions
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of all 2N + 2 twisters are determined by the position of any non-polar one of them.
Let us designate one non-polar vortex as a tracer and draw its trajectory on the
phase sphere (φ, θ). Figure 3(a–i ) shows the result for N = 3; the motions of the
remaining 2N− 1 non-polar vortices are reconstructed by applying D2N to the tracer;
as regards the polar vortices, they never move. The 2N black dots on the equator
at (0, 0), (±π/N, 0), . . . , (±(N − 1)π/N, 0), (π, 0) represent collision singularities where
the northern and southern rings become superposed; the two black dots at the poles
represent coalescence of each ring with a polar vortex. The Hamiltonian h diverges
at all these points.

While Γ < −(N − 1)/2, there are 2N equatorial saddles representing the northern
and southern rings in fully staggered positions on the equator. They are connected by
separatrices, which separate three regimes of periodic motions: above the separatrices,
westward wavy motion; below the separatrices, eastward wavy motion; inside the
separatices, counter-clockwise spinning motions around collision singularities.

When Γ = −(N − 1)/2, we see at the poles the births of new regimes of periodic
motions which expand as Γ increases > −(N − 1)/2. Figure 3(c), Γ = −0.9, shows
the new regimes soon after their births, for N = 3; by Γ = 0 (figure 3d ) they have
grown and are easier to see. On each hemisphere, they are: 2N clockwise centres
and 2N new saddles, the latter being connected by new separatrices; in the northern
polar cap bordered by the new separatices, eastward wavy motion; in the southern
polar cap, westward wavy motion. Within the equatorial band bordered by the new
separatrices the motion is as before.

At a higher value of Γ , the new and old separatrices in the equatorial band merge,
squeezing to nil the old westward and eastward wavy motions: figure 3(e), Γ = 0.7.

From then on, as shown in figure 3( f, g), Γ = 1.0, 1.8, the new saddles on the two
hemispheres become mutually connected by separatrices, whereas every separatrix
issuing from an old equatorial saddle circumnavigates a new centre and returns to the
same saddle. Just outside the ‘figures of eight’ formed by the returning separatrices, a
new regime of clockwise, peanut-shaped periodic motions appears.

Meanwhile, the ‘new’ (no longer so new) centres above and below the equatorial
saddles have been coming closer together. They eventually merge, as in figure 3(h),
Γ = 2.1, absorbing between them the equatorial saddles. As Γ continues to increase,
the equatorial band where interesting things are happening becomes thinner and
thinner, and the now overgrown polar caps of eastward and westward wavy motions
invade a larger and larger portion of the sphere, but no further bifurcations occur.

3.2. Twisters on the cylinder

On the cylinder S1 × R , with coordinates specified in § 2, consider 2N vortices of
vorticity +1 in the following positions:

N vortices at (φ, θ), (φ+ 2π/N, θ), . . . , (φ+ (N − 1)2π/N, θ),

N vortices at (−φ,−θ), (−φ− 2π/N,−θ), . . . , (−φ− (N − 1)2π/N,−θ).

As in the case of the sphere S2, these twisters are invariant under the action of the
dihedral group D2N . Figure 4 shows the trajectory of a tracer vortex for N = 3. As the
only parameter at our disposal is the discrete parameter N, we have a single picture
for each N and no bifurcation.

3.3. Twisters on ellipsoids of revolution

Though the Hamiltonian formalism is difficult to write out explicitly, it is clear
that surfaces possessing the symmetries of D2N are always hospitable to periodic
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Figure 4. Twisters on the cylinder.

Figure 5. Ellipsoids of revolution interpolating between a sphere and a cylinder.

motions of twisters. If the surface is diffeomorphic to a sphere, polar vortices may be
introduced, with attendant bifurcations. The case of ellipsoids of revolution deserves
special attention, for it can be thought of as an interpolation between the sphere case
and the cylinder case (figure 5).

4. Analysis of periodicity, bifurcation and level spacing
4.1. Proof of periodicity by symmetry and Hamiltonian

It was observed in § 3 that the positions of twisters are determined by the position of
any non-polar one of them. In other words, for given N and Γ , all possible positions
of twisters form a certain two-dimensional surface Σ in the phase space; our phase
sphere (figure 3) or phase cylinder (figure 4) is a diffeomorphic projection of Σ on
the ‘tracer component’ factor of the phase space. Since the dihedral symmetry D2N

preserves the Hamiltonian h, Σ is dynamically invariant. Now h is a first integral: in
other words, every level set of h is dynamically invariant, generically a hypersurface
of codimension 1 in the phase space. Hence a phase trajectory of twisters lies in
the intersection of Σ and a level set of h. Such an intersection is generically a one-
dimensional curve, and depending on whether it is compact or not, it is diffeomorphic
to a circle S 1 (periodic motion) or to a line R (separatrix); it can also degenerate to
a point (equilibrium). This achieves the proof that the generic orbits are periodic.

To draw the trajectories on the phase sphere or cylinder, it therefore suffices to
regard h as a function of two variables φ, θ and plot its level curves. In the case of
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the sphere S2, by a routine calculation,

21−2N−Γ 2/Ne−4πh/N

= (cos2 θ)2Γ+N−1(1− cos2 θ cos2 φ)

N−1∏
k=1

sin2

(
kπ

N

)(
1− cos2 θ cos2

(
φ+

kπ

N

))
.

In the case of the cylinder S1 ×R,

e−2πh/N = (sin2 φ+ sinh2 θ)

N−1∏
k=1

sin

(
kπ

N

)(
sin2

(
φ+

kπ

N

)
+ sinh2 θ

)
.

The diffeomorphism x = sinφ (|φ| < π), y = sin θ (|θ| < π/2) or y = sinh θ (|θ| < ∞)
converts the above equations into (almost) algebraic equations and maps trajectories
to (almost) algebraic curves. The proviso ‘almost’ is due to the exponent Γ for S 2:
for rational Γ , these are genuine algebraic curves. For S 1 ×R the problem does not
arise. A corollary of algebraicity is that degeneracies cannot be too bad: for example,
equilibria are isolated (actually mere analyticity implies this conclusion). Sharper
information concerning the numbers of ovals (periodic motions in our context),
branches (separatrices), isolated points (equilibria) and their arrangements may be
obtained from the theory of topology of real algebraic curves, originated by Harnack;
cf. Bochnak, Coste & Roy (1987) and the state of the art in Mikhalkin (2000).

The case of ellipsoids of revolution, though analytically harder, is topologically
identical to the case of the sphere S2.

4.2. Critical polar vorticity

For twisters on the sphere S 2, the critical value −(N − 1)/2 of the polar vorticity
Γ for the earliest bifurcation (figure 3(b), Γ = −1.0 when N = 3) may be deduced
by comparison with the theory on the plane. In the plane C, a regular N-gon of
vortices of vorticity +1 spins counter-clockwise. The vorticity of a vortex that needs
to be inserted at the centre to immobilize the polygon is −(N − 1)/2, independently
of the scale of the polygon. On S 2, as the northern ring of twisters approaches the
north pole, the influence from the southern vortices becomes negligible, while in
the neighbourhood of the north pole the sphere theory is approximated better and
better by the plane theory. So, in the limit, Γ < −(N − 1)/2 successfully induces a
clockwise (westward) motion on the northern hemisphere, whereas Γ > −(N − 1)/2
is insufficient to brake the counter-clockwise (eastward) motion of the ring. Because
the motion farther south is westward, the latter scenario leads inevitably to the birth
of new equilibria.

4.3. Logarithmic divergence of the Hamiltonian

Near the collision and coalescence singularities (e.g. black dots in figure 3), the
Hamiltonian h diverges like − log ε, ε ↘ 0. This makes the spacing between levels
crowded near the singularities (which is not relevant here) and inconveniently sparse
near the equilibria (where we wish to zoom in). In numerical simulations, we took
the logarithmically biased spacing

min h+ (max h−min h)

(
l

L

)β
(l = 0, . . . , L)
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(a) (b) (c)

ss

Figure 6. Splitting a vortex: (a) along the edges; (b) along the faces;
(c) astride the edges, alternating vorticities.

Figure 7. Vortices starting on the edges near the vertices of a regular tetrahedron.

(L = number of levels plotted), whose effect is to enhance the resolution near minima
if β > 1 and near maxima if β < 1. Pictures in figures 3 and 4 were plotted at biases
β = 5, 1/2.

5. Periodic motions with other symmetries
Symmetries different from that of the dihedral group D2N can be exploited to

construct periodic motions of vortices. We adopt the notation ZN , Sn, An for the
cyclic group of order N, the group of all permutations of n objects (symmetric group),
the group of even permutations of n objects (alternating group) respectively. ZN , D2N ,
A4, S4, A5 exhaust all discrete subgroups of the group of spatial rotations SO(3),
which is the spatial symmetry group of the Hamiltonian vortex theory on the sphere
S2. (The theory has a few extra non-spatial symmetries, such as the antipodal map
combined with the reversal of vorticities.)

Four vortices of vorticity +1 at the vertices of a regular tetrahedron are in equi-
librium. Now at each vertex, split the vortex along the edges into three vortices of
vorticity +1/3 as in figure 6(a). The resulting motion of 4 × 3 vortices (figure 7) is
periodic and bifurcates once as the split parameter s varies. The symmetry is A4. We
obtain analogous periodic motions with symmetries S4, S4, A5, A5 starting from a
cube, a regular octahedron, a regular dodecahedron, a regular icosahedron. Splitting
along the faces as in figure 6(b) again creates periodic motions; this time, moreover, as
the split parameter varies the vortices of the given polyhedron move like the vortices
of its dual polyhedron as the latter’s split parameter varies backward.

We have also found periodic motions to which the argument of § 4.1 does not
apply. Figure 8 shows two parallel equilateral triangles of three vortices of vorticity
+1 at asymmetric latitudes. The symmetry group is Z3.

Note that dancing vortices (cf. figure 1 and Tokieda 2001) too can accommodate
symmetries of regular polyhedra. Figure 9 shows the trajectories of 4× 3× 2 vortices
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Figure 8. Equilateral triangles of vortices at asymmetric latitudes.

Figure 9. Dancing vortices with tetrahedral symmetry.

of alternating vorticities started around the vertices of a regular tetrahedron at the
positions of figure 6(c).

Let us summarize the approach to the construction of periodic motions of N
vortices developed in this paper.

(1) Give the vortices initial positions with a discrete symmetry that preserves the
Hamiltonian. Hamilton’s equation being first-order (‘vortices have no inertia’), the
velocities thereby inherit the same symmetry, so that the vortices will keep the same
symmetry throughout their evolution.

(2) Estimate the size of the symmetry, or more precisely, count the number G of
different group orbits in the given initial positions: the larger the size, the smaller G.
The dimension 2N of the phase space is reduced to 2G.

(3) If at least 2G − 1 independent first integrals are available, then generic tra-
jectories are periodic. Even if there are too few first integrals, an application of the
intermediate value theorem may still detect some periodic motions.
Detection of asymmetric periodic motions is of course beyond the scope of our
approach. Aref & Vainchtein (1998) discovered asymmetric relative equilibria of
vortices on the plane.

A. S. is grateful to Martin Gander for his advice on numerical methods. T. T. thanks
Isao Imai, James Montaldi and Mark Roberts for helpful conversations.
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